Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering.
نویسندگان
چکیده
A current challenge in bone tissue engineering is to create scaffolds with suitable mechanical properties, high porosity, full interconnectivity and suitable pore size. In this paper, polyamide and polycaprolactone scaffolds were fabricated using a solid free form technique known as selective laser sintering. These scaffolds had fully interconnected pores, minimized strut thickness, and a porosity of approximately 55%. Tensile and compression tests as well as finite element analysis were carried out on these scaffolds. It was found that the values predicted for the effective modulus by the FE model were much higher than the actual values obtained from experimental results. One possible explanation for this discrepancy, viz. the surface roughness of the scaffold and the presence of micropores in the scaffold struts, was investigated with a view to making recommendations on improving FE model configurations for accurate effective property predictions.
منابع مشابه
Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
Polycaprolactone (PCL) is a bioresorbable polymer with potential applications for bone and cartilage repair. In this work, porous PCL scaffolds were computationally designed and then fabricated via selective laser sintering (SLS), a rapid prototyping technique. The microstructure and mechanical properties of the fabricated scaffolds were assessed and compared to the designed porous architecture...
متن کاملBorate Bioactive Glass Scaffolds Made by the Selective Laser Sintering Process
The pore geometry of bone scaffolds, intended for use in bone repair or replacement, is one of the most important parameters in bone tissue engineering. It affects not only the mechanical properties of the scaffolds but also the amount of bone regeneration after implantation. Scaffolds with five different architectures and four porosity levels were fabricated using borate bioactive glass (13–93...
متن کاملSynthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application
A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...
متن کاملSelective laser sintering of hydroxyapatite/poly- - caprolactone scaffolds
Selective laser sintering (SLS) enables the fabrication of complex geometries with the intricate and controllable internal architecture required in the field of tissue engineering. In this study hydroxyapatite and poly-caprolactone, considered suitable for hard tissue engineering purposes, were used in a weight ratio of 30:70. The quality of the fabricated parts is influenced by various process...
متن کاملEffect of Architecture and Porosity on Mechanical Properties of Borate Glass Scaffolds Made by Selective Laser Sintering
The porosity and architecture of bone scaffolds, intended for use in bone repair or replacement, are two of the most important parameters in the field of bone tissue engineering. The two parameters not only affect the mechanical properties of the scaffolds but also aid in determining the amount of bone regeneration after implantation. Scaffolds with five different architectures and four porosit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of materials science. Materials in medicine
دوره 20 6 شماره
صفحات -
تاریخ انتشار 2009